Senin, 09 Mei 2011

Penggunaan Differensial

1. MENENTUKAN KOEFISIEN ARAN GARIS SINGGUNG
    (Gradien) di titik
   (x1y1) pada kurva y = f(x)
   
m = f`(x1)
f`(x1) berarti nilai turunan f(x) pada titik dengan absis x = x1,

Ket :
Khusus untuk jenis fungsi kuadrat.
Jika titik tidak terletak pada grafik, maka gradien garis singgungnya dimisalkan dengan m yang dicari dengan menggunakan persamaan garis y - y1 = m (x - x1) disinggungkan dengan persamaan kurva y = f(x) dengan syarat D = 0 (D = diskriminan dari hasil eliminasi kedua persamaan)


2. MENENTUKAN MONOTON FUNGSI

• Fungsi y = f(x) monoton naik pada suatu interval,
                         jika pada interval itu berlaku f'(x) > 0

• Fungsi y = f(x) monoton turun pada suatu interval,
                         jika pada interval itu berlaku
f'(x) < 0


3. MENENTUKAN TITIK STASIONER

Fungsi y = f(x) ® Syarat stasioner f'(x) = 0

JENIS - JENISNYA


STASIONER :

MAKSIMUM

Syarat : f`(x) = 0 ® x = x0; f'' (x0) < 0 ® Titik maksimum (xo, f(xo))

MINIMUM
Syarat : f '(x) = 0 ® x = x0; f'' (x0) > 0 ® Titik Minimum (xo, f(xo))

BELOK
Syarat : f '(x) = 0 ® x = x0; f'' (x0) = 0 ® Titik belok (xo, f(xo))

Nilai Stasioner
adalah nilai fungsi di absis titik stasioner

Keterangan :

1. Untuk menentukan jenis jenis titik stasioner dapat juga dicari dengan    melihat perubahan tanda disekitar titik stasioner.
   Langkah :
   a. Tentukan absis titik stasioner dengan syarat f '(x) = 0 ® x = xo
   b. Buat garis bilangan f '(x)
   c. Tentukan tanda-tanda disekitar titik stasioner dengan        mensubstitusi sembarang titik pada f '(x)
   d. Jenis titik stasioner ditentukan oleh perubahan tanda di sekitar
       titik stasioner.

ket : f`(x) > 0 grafik naik
       f`(x) > 0 grafik turun

2. Nilai maksimum/minimum suatu fungsi dalam
interval tertutup didapat dari nilai stasioner fungsi dalam interval itu atau dari nilai fungsi pada ujung - ujung interval


4. MASALAH FISIKA

Jika S(t) = Jarak (fungsi waktu)
     
V(t) = Kecepatan (fungsi waktu)
      a(t) = Percepatan (fungsi waktu)
          t = waktu


maka V = dS/dt dan a = dV/dt

5.
MENYELESAIKAN MASALAH LIMIT

DALIL L'Hospital

Jika fungsi-fungsi f dan g masing-masing terdifferensir pada x = a dan f(a) = g(a) = 0 atau f(a) = g(a) = ¥ sehingga :

 lim         f(x)  =  0  atau   lim     f(x) = ¥, maka
x
®a       g(x)      0          x®a   g(x)   ¥

 lim         f(x)  =   lim     f`(x) = ¥, maka
x
®a       g(x)     x®a   g`(x)    ¥

0 comment:

Posting Komentar